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Abstract: In [5], Ortega has analyzed “generalized” collision solutions of the periodically forced rectilinear
Kepler problem. In this note, we explain a di�erent approach to study these solutions by embedding the non-
autonomous Hamiltonian system into the zero-energy level of an autonomous Hamiltonian system and by
employing the Levi-Civita regularization to regularize the double collisions. In addition to this, under a cer-
tain smoothness hypothesis of the periodic force term, we show that there exists a set of positive measure
of generalized quasi-periodic solutions in the extended phase space, each of them accumulated by general-
ized periodic solutions of the system. The energy of these quasi-periodic solutions can have an arbitrary large
absolute value.
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1 Introduction
In the rectilinear periodically forced Kepler problem (studied, e.g., by Lazer and Solimini [3])

ü = −
1
u2

+ p(t), p(t + 2π) = p(t), u ∈ ℝ+, (1.1)

generalized solutions were defined by Ortega in [5] to be collision solutions of the system with collisions
regularized by elastic bouncing, i.e., when the particle moves backwardly after the collision while keeping
the same energy.

Indeed, in this one-dimensional rectilinear problem, if no collision is admitted, the richness of the dy-
namics reduces greatly (cf. [5]). In the case when the force term p(t) is C1, Ortega showed the existence of
many generalized periodic solutions by analyzing a Poincaré section associated to the collisions and also
showed that the associated Poincaré map is an exact symplectic twist map.

In this note, we explain a di�erent approach to this fact. We embed the non-autonomous Hamiltonian
system (1.1) into the zero-energy level of an autonomous Hamiltonian system and we employ the Levi-Civita
regularization (see Levi-Civita [4]; note that this already appeared in Goursat [2]) to regularize the colli-
sions. Since the resulting system is regular at collisions, we may then deduce by standard arguments that
the Poincaré map associated to the collision set is exact symplectic.

In expressing the unperturbed regularized system in action-angle coordinates, we observe that the twist
property of this Poincaré map follows from the non-degeneracy of this systemwith respect to the action vari-
ables in a region where u is supposed to be small enough. When the function p(t) is smooth enough to allow
the application of the KAM theorem, we may obtain the following KAM-type results.
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Theorem 1.1. In (1.1), if for some δ > 0 the function p(t) is C4+δ, then there exists a set of positive measure
of generalized quasi-periodic solutions in the extended phase space. Moreover, if p(t) is C9+δ, then there exist
infinitely many generalized periodic solutions with frequencies νN ∈ ℚ approaching μ ∈ ℝ \ℚ, where (μ, 1) de-
notes the frequency of a generalized quasi-periodic solution. In addition, these solutions have energies tending
to −∞.

These orbits are obtained from invariant 2-tori lying in the three-dimensional zero-energy hypersurface of the
embedded two-degree-of-freedom autonomous system. The existence of these invariant tori prohibits a large
change of the corresponding action variables corresponding to the energy and the amplitude of u in (1.1)
of the trajectories lying between them. Moreover, by an application of the Poincaré recurrence theorem to
the Poincaré map associated to the Poincaré section related to collisions, we conclude that the restricted
dynamics lying in the regionboundedby two invariant curves (intersections of invariant toriwith thePoincaré
section) is Poisson stable.When p(t) is su�ciently smooth, this Poisson stability gives, in particular, a partial
answer to the question raised in [5] concerning the recurrence of the restricted dynamics.

2 Levi-Civita Regularization of the Rectilinear Kepler Problem
The system (1.1) is a time-periodic Hamiltonian system with Hamiltonian

H(u, y, t) = y2

2 −
1
u
− p(t)u,

where y denotes the conjugate momentum of u.
In the case when the perturbation p(t) is of class C1, we may embed this time-periodic Hamiltonian sys-

tem in the zero-energy hypersurface {H̃ = 0} of the autonomous C1-Hamiltonian

H̃ = τ + H = τ + y
2

2 −
1
u
− p(t)u.

The initial time variable t ∈ T := ℝ/2πℤ is now an angle variable in this system and the variable τ, conjugate
to t, is just the negative of the energy of H.

Remark 2.1. Indeed, since the Hamiltonian is merely C1, the Peano existence theorem guarantees the exis-
tence of solutions of theCauchyproblemof the correspondingHamiltonian equationbut there is no guarantee
for uniqueness. Nevertheless, for this particular system, after restricting to {H̃ = 0}, we observe that omitting
the equation of τ̇, theHamiltonian equations are equivalent up to a translation of the time origin to theHamil-
tonian equations associated to H(u, y, t) for which the Cauchy–Lipschitz theorem guarantees the uniqueness
of solutions. Thus, as the negative of the energy, τ is uniquely determined.

Remark 2.2. We remark that the dynamics in di�erent energy surfaces of H̃ are all equivalent, since we may
deduce one from the other simply by a shift of τ.

On {H̃ = 0}, we change time (which now has nothing to do with the real time t) by multiplying H̃ by u
and pulling back the resulting function by the usual symplectic 2-to-1 Levi-Civita transformation restricted
to T∗(ℝ \ {z = 0}), i.e.,

L.C. : T∗(ℝ \ {z = 0}) × T∗ℝ→ T∗ℝ+ × T∗T,

(z, w, t, τ) Ü→ (u = z2, y = w
2z , t, τ).

The system H̃ is thus transformed into the system

K(z, w, t, τ) = L.C.∗(uH̃) = z2τ + w
2

8 − p(t)z4 − 1,

which defines a Hamiltonian system on the symplectic manifold

(T∗(ℝ \ {z = 0}) × T∗T, dw ∧ dz + dτ ∧ dt).
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By its expression, this system can be extended analytically to

(T∗ℝ \ {z = 0, w = 0} × T∗T, dw ∧ dz + dτ ∧ dt).

The extended system is regular on the two-dimensional subset Col := {z = 0} of {K = 0}, which is called the
collision set. As a matter of easy computation, we see that |w| = 2√2 on Col.

3 The Poincaré Section Related to the Collision Set
We now analyze, in our setting, the surface of section associated to collisions used in [5] and we give an
alternative approach to [5, Section 6] concerning the exact symplecticity of this mapping.

For τ > 0, when p(t)= 0, the dynamics of K0 = z2τ+w2/8−1 is easily understood. This is a coupled system
of a harmonic oscillator in the (z, w)-space together with a rotator in (τ, t)-space. The set Col+ := Col ∩ {τ > 0}
is seen to be a global section for the flow restricted to {K0 = 0, τ > 0}.

The Poincaré map S : Col+ ⊂ ℝ ×T→ ℝ ×T sends a pair of collision time-energy (t0, τ0) to the suc-
cessive pair of collision time-energy (t1, τ1). In [5, Proposition 5.1], the author has proved that there ex-
ists a 2π-periodic, lower semi-continuous function ϕ : ℝ→ ℝ ∪ {+∞} such that the mapping is well-defined
(i.e., t1 < +∞) on

D := {(t0, τ0) ∈ D̃ : τ0 < ϕ(t0)}

with minℝ ϕ ≥ −2‖p‖1/2∞ .
We now follow [7] to show that this map is exact symplectic. For any small disk α in D and its image

α� = S(α), we denote by Σ the cylinder formed by the integral curves of K connecting ∂α and ∂α�. By the
Stokes formula and the closeness of ω = dλ with λ = wdz + τdt, we have

∫
α

ω = ∫
α�

ω + ∫
Σ

ω.

Since Σ is formed by the integral curves of K and is two-dimensional, we deduce from the fact that the vector
field XK lies in the kernel of the restriction of ω to {K = 0} that the further restriction of ω to Σ vanishes.
Therefore,

∫
α

dτ ∧ dt = ∫
α�

dτ ∧ dt.

On the other hand, for any loop ã in D and ã� = S(ã), we deduce by the Stokes formula that

∫
ã
λ − ∫

ã�
λ = ∫

Σ

ω = 0

and, therefore,
∫
ã
τdt = ∫

ã�
τdt.

We thus have the following proposition.

Proposition 3.1. The mapping S is exact symplectic with respect to the 2-form dτ ∧ dt on D.

4 Some Periodic and Quasi-Periodic Solutions
Given the function p(t), when restricted to a region of the phase space of K where z is small enough and τ > 0
is bounded away from zero, the system K(z, w, t, τ) is a perturbation of the integrable system

K0 = z2τ + w
2

8 − 1.
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The “integrable approximating system” K0 reads

√2
2 τ1/2I − 1

in action-angle form by calculating the action-angle coordinates (I, θ, τ, t�) defined by the relations

{{{{{{
{{{{{{
{

z = 2−1/4I1/2τ−1/4 cos θ,
w = −2 ⋅ 21/4I1/2τ1/4 sin θ,
τ = τ,
t = t� + 4−1Iτ−1 sin2θ.

The calculation goes in the following way. We first fix τ and reduce the system K0 by the S1-symmetry of
shifting t, and then we calculate the action variable I = A(h)/2π by calculating the enclosed area A(h) of the
ellipse {K0 = h} in the (z, w)-plane. Inverting the mapping h Ü→ I(h) gives

K0 = h =
√2
2 τ1/2I − 1.

We thus set
z = 2−1/4I1/2τ−1/4 cos θ, w = −2 ⋅ 21/4I1/2τ1/4 sin θ.

In the unreduced phase space with variables (I, θ, τ, t), we have

dw ∧ dz + dτ ∧ dt = dI ∧ dθ + dτ ∧ d(t − 4−1Iτ−1 sin2θ).

Therefore, the set of variables (I, θ, τ, t� = t − 4−1Iτ−1 sin2θ) forms a set of action-angle coordinates of K0.
The subset {τ > 0, I > 0} of the phase space of K0 is seen to be foliated by the invariant 2-tori of K0 ob-

tained by fixing I and τ, and the associated Poincaré map Š = S|D is an exact twist map. The perturbation
takes the form

P(I, θ, τ, t�) = p(t(I, θ, τ, t�))I2τ−1 cos4 θ.

We now have a choice to study the dynamics of K as a perturbation of K0 (which is the case for given p(t)
when |z| is small enough). We may either work directly with the Hamiltonian or with the Poincaré map Š.
The objects between the two approaches are naturally related. Fixed and periodic points of Š give rise to
periodic solutions of K and invariant curves of Š give rise to invariant tori of K. They give rise to generalized
periodic and quasi-periodic solutions of (1.1), respectively. Recall that by “generalized solutions” we simply
refer to those collision solutions along which the collisions are regularized by elastic bouncing, which is
exactly what the Levi-Civita regularization implies for the initial system.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Weopt toworkwith theHamiltonian function. The reader is invited to comparewith [5]
for results obtained from analyzing the mapping Š.

We introduce a small parameter ε and we shall apply the KAM theorem to invariant tori of K0 in a re-
gion where τ ∼ ε−2, I ∼ ε, and where the unperturbed energy of K0 lies in (−δ, δ) for a certain small δ > 0
independent of ε.

We observe that the unperturbed system K0 is non-degenerate in the sense that its Hessian with respect
to τ and I is non-degenerate. Indeed, since K0 depends linearly on I, we have ∂2K0/∂I2 = 0 and the determi-
nant of this Hessian matrix equals −(∂2K0/∂I∂τ)2, which, up to a constant, is equal to τ−1 ∼ ε2.

Since the non-degeneracy of the unperturbed system depends non-trivially on the small parameter ε,
in order to show that a standard KAM theorem holds (a simple version that applies to our case is [1, Theo-
rem 6.16], in which it is also remarked that it is enough to have r > 4 to apply [6, Theorem 2.1]), we have to
make yet another rescaling. Set

(I, θ, τ, t�) = (ε−2I�, θ, ε−2τ�, t�).

We have
dI ∧ dθ + dτ ∧ dt� = ε−2(dI� ∧ dθ + dτ� ∧ dt�), K0(I, τ) = ε−3K0(I�, τ�).
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Moreover, by its explicit expression, we also have

P(I, θ, τ, t�) = ε−2P(I�, θ, τ�, t�).

The rescaled complete system is thus equivalent to the system with Hamiltonian K0(I�, τ�) + εP(I�, θ, τ�, t�)
and the (standard) symplectic form dI� ∧ dθ + dτ� ∧ dt after a further rescaling of time. In the region τ� ∼ 1,
I� ∼ ε3, the unperturbed function K0(I�, τ�) is C∞-smooth. The determinant of the Hessian of K0(I�, τ�) reads
−(∂2K0(I�, τ�)/∂I�∂τ�)2 ∼ 1 and is now independent of the small parameter ε. For r > 4, the Cr-norm of the
perturbation εP(I�, θ, τ�, t�) is seen to be of order O(ε). The cited KAM theorem can thus be applied directly
to this rescaled system, provided that ε > 0 is chosen to be small enough.

We thus find a set of positive measure of invariant tori of K, in particular, the function K takes values
in (−δ/2, δ/2) on each of them, provided ε is small enough, and we deduce from [6, Theorem 2.1] that
when r > 9, these invariant tori are accumulated by periodic orbits of K. In view of Remark 2.2 and by
Fubini’s theorem, the persisted invariant 2-tori form a set of positive measure in {K = 0} accumulated by
periodic orbits, provided that ε is small enough. By assumption, τ → ∞ when ε → 0.

Remark 4.1. Wemay also impose a smallness condition (in addition to the smoothness condition) on p(t) to
find invariant tori of K occupying a larger set in the phase space by an application of the KAM theorem. The
proof goes along the same lines except for the fact that it is no longer necessary to rescale the action variables.

The existence of these two-dimensional KAM tori in the three-dimensional {K = 0} entails that these periodic
orbits are “stable” in the sense that there are no large changes of the action variables τ and I, which translates
into the energy and the amplitude of (1.1), respectively.

In [5], the existence of families of generalized periodic solutions is shown by an application of the
Poincaré–Birkho� theorem. In our case, these periodic solutions, which correspond to periodic points of the
Poincaré map lying between invariant curves (which are themselves intersections of invariant 2-tori with the
constructed Poincaré section), are stable à la Lagrange in the same sense that there are no large changes of the
energy and the amplitude. Moreover, these invariant curves bound the positive but finite |dτ ∧ dt|-measure
in D preserved by S, which allows us to apply the Poincaré recurrence theorem (see [1, Section 2.6]) to con-
firm that |dτ ∧ dt|-almost all points in the bounded regions (what is called Birkho�’s region of instability)
are recurrent. Therefore, the dynamics confined to these bounded regions is Poisson stable.

Acknowledgment: The author wishes to thank Rafael Ortega for his interest and formany helpful comments,
in particular, for those clarifying the calculation of the action-angle coordinates and the rescaling arguments.
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